
978-1-4799-8860-0/15/$31.00 ©2015 IEEE 536 38th
 Int. Spring Seminar on Electronics Technology

Fully Integrated Artificial Intelligence Solution for Real Time
Route Tracking

Laurentiu–Mihai Ionescu1), Alin Mazare1), Adrian–Ioan Lita2), Gheorghe Serban1)

1) Faculty of Electronics, Communications and Computers, University of Pitesti, Romania
2) Politehnica of Bucharest, Romania

ioan.lita@upit.ro

Abstract: In this paper the authors propose a solution in which an intelligent algorithm – genetic
algorithm in our case – is used to generate commands for a robot in real time, so that the robot can
determine the optimal moves considering several aspects: route tracking and low power consumption.
Genetic algorithms are intelligent solutions for multi–criteria optimization and using them to find
solutions to the optimization problems containing constrictions. However, they were designed as
algorithms running on computer and therefore cannot ensure rapid generation of the solutions. On the
other hand, the problem of determining the optimal response to command a robot requires real time
response. The paper presents a method for hardware implementation and integration in a FPGA
circuit of a genetic algorithm, in order to accelerate the convergence and to generate solutions in real
time.

1. INTRODUCTION

The FPGA circuits occurred in the mid-90s. They
were made available for general purpose applications
in 2000. One research area consists of partially or
fully implementation of intelligent algorithms in
FPGA reconfigurable circuits. Genetic algorithms
(GA) – a class of intelligent algorithms based on
artificial evolution – are bio-inspired solutions for
finding the optimal response to a problem that has
multiple criteria.

The concept of bio-inspired solution has been
described first in 1970 [1] and the implementation
solution was on computer. As a whole class of bio-
inspired intelligent algorithms, the genetic algorithms
[2] were implemented in software applications as
sequential work algorithms. There are numerous
applications and research, even commercial software
tools using genetic algorithms. They are used to
solving multi-objective problems [3].

In fact, all problems of optimizations, in any area
can be solved using artificial intelligence solutions.
With evolutionary algorithms there are more AI
solutions like neural networks and fuzzy systems used
to solve optimization problems [4].

Providing an optimal solution using software
implemented algorithms occurs within a relatively
large time and would not be realistically used as an
application with real time response.

On the other hand, FPGA circuits allow the imple-
mentation of parallel processing solutions. Implemen-
tation of a genetic algorithm on FPGA modules means
converting sequential blocks to parallel modules.

The problem of using software implemented
genetic algorithms is the great convergence time.
Also, being pseudo-random solutions, the convergence
time varies and cannot guarantee a response within a
certain amount of time. Thus, they cannot be used as
applications with a real-time response. Instead, GA
can be used as application optimization solutions to
work in real time, as was shown in [5] or [6].

A new-appeared area which is continuously
evolving is the one related to the implementation of
the software algorithms on hardware structures, in
order to parallelize some of their components and
increase the response speed [7]. Especially this is
possible on reconfigurable circuits, a flexible
hardware solution for implementing various
applications in many areas like data mining [8] or
signal processing [9].

978-1-4799-8860-0/15/$31.00 ©2015 IEEE 537 38th
 Int. Spring Seminar on Electronics Technology

In the genetic algorithms, the hardware
implementation solutions have allowed reducing the
convergence time so that, even if this is variable, it
can fit a maximum permissible limit for the
applications with real-time response. There are several
papers dealing with the implementation of genetic
algorithms on different hardware structures. Name of
HGA was introduced in [10] for presenting a FPGA
partial integrated GA (some modules were running on
computer). Later, there have been developed several
solutions for full integration of GA in FPGA [11], [12]
or ASIC [13] with outstanding results in accelerating
the convergence.

The solution presented in this paper offers a
convergence time less than 2 ms – regardless of the
input values which are taken into account. This means
providing solutions within a very short time and
making them suitable for real-time applications.

The next section is dedicated for presenting genetic
algorithms. In section 3 the system is described, the
leaving section 4 for presenting results.

2. GENETIC ALGORITHMS

The genetic algorithms are search methods using
pseudo-random algorithms. The search procedure is
carried out in several stages [2]:

1. The solutions are encoded in chromosomes and
individuals. Obviously for this step we do not know
the solutions but we do know what they will represent.
For example, if they represent real numbers then we
will have chromosomes of real number type (floating
or fixed-point representation).

2. A first set of random solutions is generated. This
set is called the generation 0.

3. The population goes through the evaluation
process. To make an assessment we need a purpose.
The solutions are judged on how close or far away are
from the intended purpose. For example, the purpose
may be an expression of an equation.

4. Population goes through the selection process.
Now each individual has got an associated note
received at 3 that reflects the proximity of the sought
solution. At this stage individuals are sorted according
to the marks they received. Here the individuals for the
next steps are selected. The method of selection may
vary, the most used is the roulette one.

5. The crossover operator applies to the parents
possibly with a certain probability. One or more
crossing points are established – at the gene’s level –
and then genetic information from parents swap in the
crossing points.

6. The mutation operator is a selection of an
individual of the population – with a certain probability.
One or more genes are randomly modified to this.

7. The individuals’ elimination is optional – if it is
to keep a population with a certain number of
individuals. After stages 5, 6 and possibly 7 we have a
new generation.

8. 3–7 is repeated until the solution is decided in 3.
The evolutionary loop can also be stopped if the
exceedance of a maximum permitted number of
generations is observed.

3. HARDWARE GENETIC ALGORITHM

In figure 1 we have a block diagram of the system.

Fig. 1. Our solution of HGA. The pipeline buffers
are dual ports BRAMS and ensure processing

of more generations in same time.

All GA stages were implemented in hardware
modules. First, the entire population was evaluated.
Each individual has fitness (evaluation rating). Then
the pair individuals-fitness was passed through the
selection module. From the selection module,
individuals reach the crossover module and the
mutation module (modules responsible with genetic
operations). Crossover and mutation generates new
individuals (offspring) which are evaluated.

978-1-4799-8860-0/15/$31.00 ©2015 IEEE 538 38th
 Int. Spring Seminar on Electronics Technology

GA was implemented in a pipeline flow. Thus,
while the generation n is to the input of mutation
module, generation n+1 brings parents for crossover
operation, and the generation n+2 are prepared for
selection. All this is possible through the use of
special SRAM memories that exist inside FPGA:
Block RAM memories. They allow bi-port
configuration: one port used for writing and another
for reading. The evaluation module consists of
arithmetic cells, which get the minimum for
coordinator function and energy function.

As we mentioned, our system will be used for
determining the position of a mobile. It wants to avoid
obstacles and reduce energy consumption. If the
mobile is at point coordinates (x0, y0), there is a
function called T (x0, y0, x, y) which determines the
possibility of following a new route to the coordinates
(x, y). A high value of this function means that at the
point coordinates (x, y) either an obstacle is found or
an obstacle is near to that point.

It is impossible to write the value of such functions
but can be obtained practical by using an ultrasonic
sensor located on a 360 degrees rotating device.

Energy consumption is given by a function
(function P) that estimates both the power
consumption to perform a move to the point (x, y)
(power consumption for moving to a flat ground) and
the value of the function I – dependent on the slope
until to the point (x, y):

E(x,y) = P(x0,y0,x,y) + I(x0,y0,x,y) (1)

The amount of power consumption may be
estimated by knowing the length of the distance to the
x, y, while the slope can be determined by measuring
the slope of the terrain (do it by means of a pair of
ultrasonic sensors placed at different angles).

By performing a full rotation (360 degree) of the
device with the sensors, we have values for the
functions T and E. We obtain an expression of the
form:

α*T(x0,y0,x,y) + β*E(x0,y0,x,y)  0

It is therefore reduced to the determination of (x, y)
coordinates (the unknown) in a linear equation with

Fig. 2. Evaluation circuit for 1 individual.
For each individual there is an evaluation

module in genetic pipeline flow.

two unknowns. From the mathematical point of view
it is impossible, but it is possible by using a solution
based on heuristic pseudo GA.

4. SYSTEM TESTING AND EXPERIMENTAL
RESULTS

The system is implemented on a Zybo board that
contains a FPGA Zynq 7000 manufactured by Xilinx
in 22 nm technology.

Fig. 3. Experimental scheme.

For sensing we used ultra sound sensors (pair)
placed on a mobile fitting. The sensors are not in same
horizontal plane and there is a difference between the
heights where the sensors are placed. Table 1
represents experimental input data.

978-1-4799-8860-0/15/$31.00 ©2015 IEEE 539 38th
 Int. Spring Seminar on Electronics Technology

Tab. 1. Experimental inputs for sensors orientation.

Size Value

Height of mobile system
(including sensors fitting)

30 cm.

Difference angle between
sensors

30 degree

Angle for highest placed
sensor (for obstacle
avoidance)

~63 degree

Angle for highest placed
sensor (for slope of terrain)

~56 degree

Angle for lowest placed
sensor (for slope of terrain)

~27 degree

Horizontal step rotation 1
angle for mobile fitting

18 degree

Advancing step size 60 cm

Genetic algorithm used in tests had the following
parameters:

Tab. 2. Parameters of Genetic Algorithm used in
experiments.

Parameter Value

Number of individuals 10

Selection method Roulette

Crossover ratio 1/generation

Crossover points 1

Mutation ratio 0.25

Mutation points 1

In table 3 we present results after implementation
(synthesis and implementation).

Tab. 3. Resources used in Zynq 7000 Z7010.

Resource Used From %

Slice Registers 7480 35200 21.25 %

Slice LUTs 17124 17600 97.3 %

Block RAM/FIFO 5 60 8.33 %

BUFG/BUFGCTRL 5 32 15.63 %

DSP48E1s 40 80 50 %

Slice Registers 7480 35200 21.25 %

For Zynq Z 7010 it is used 97 % from
combinational resources. But this circuit is the
smallest in this family.

Tab. 4. Response time.

Response time Value

Convergence time
(FPGA response one solution)

11 us

Response time ultrasound emission -
reception

2 ms

Rotation / second 60

5. CONCLUSIONS

The proposed solution makes the determination of
optimal next coordinate for a mobile system, using a
hardware accelerator based on genetic algorithms. The
whole system is integrated in a SOC circuit thus
ensuring both hardware acceleration and interfacing
with the user.

The results show a real time response of the
system. A future research direction will be the
extension of scope functions to introduce another
search criterion.

REFERENCES

[1] J. Holland (1992), “Adaptation in Natural and Artificial
Systems” Cambridge, MA: MIT Press. ISBN 978-
0262581110.

[2] David E. Goldberg, “Genetic algorithms in search,
optimization, and machine learning”, Machine learning,
Issue 2, Addison-Wesley, Reading, MA, 1989.

[3] Carlos A. Coello Coello, Gary B. Lamont, David A.
Van Veldhuizen, “Evolutionary Algorithms for Solving
Multi-Objective Problems”, Springer Science+Business
Media, LLC, 2007.

[4] Belu, Nadia; Anghel, Daniel Constantin; Rachieru,
Nicoleta, „Failure Mode and Effects Analysis on control
equipment using fuzzy theory”, ModTech International
Conference - Modern Technologies in Industrial
Engineering Volume: 837 Pages: 16-21, 2013.

[5] Vaithiyanathan, D; Seshasayanan, R; Kunaraj, K, „An
evolved wavelet library based on genetic algorithm”,
TheScientificWorldJournal Volume: 2014 Pages:
494319, 2014.

[6] Oklapi, E., Deubzer, M. ; Schmidhuber, S. ; Lalo,
E., Mottok, J., “Optimization of real-time multicore
systems reached by a Genetic Algorithm approach for
runnable sequencing”, 2014 International Conference
on Applied Electronics (AE), 233 - 238, 9-10 Sept. 2014.

[7] Mihaela Maliţa, Gheorghe Ştefan, Dominique
Thiébaut, "Not multi-, but many-core: designing
integral parallel architectures for embedded
computation", ACM SIGARCH Computer
Architecture News - Special issue: ALPS '07---
advanced low power systems archive, Volume 35
Issue 5, December 2007, Pages 32-38.

978-1-4799-8860-0/15/$31.00 ©2015 IEEE 540 38th
 Int. Spring Seminar on Electronics Technology

[8] Iana, G.V.; Anghelescu, P; Serban, G., “RSA
encryption algorithm implemented on FPGA”, 2011
International Conference On Applied Electronics, SEP
07-08, 2011.

[9] Visan, Daniel Alexandru; Jurian, Mariana; Lita, Ioan,
„Reconfigurable Platform for Versatile Generation of
Communication Signals”, Conference: 32nd Interna-
tional Spring Seminar on Electronics Technology,
MAY 13-17, Pages: 233-236, 2009.

[10] S. Scott, A. Samal, S. Seth (1995), “HGA: a hardware-
based genetic algorithm”, FPGA '95 Proceedings of the
1995 ACM third international symposium on Field-
programmable gate array, Pages 53-59, 1995.

[11] R. Faraji, H.R. Naji (2014), “An efficient crossover
architecture for hardware parallel implementation of
genetic algorithm”, Neurocomputing, Volume: 128,
Pages: 316-327, ISSN: 0925-2312.

[12] A. Swarnalatha, A.P. Shanthi (2014), “Complete
hardware evolution based SoPC for evolvable
hardware”, Applied Soft Computing, Volume: 18,
Pages: 314-322, ISSN: 1568-4946.

[13] Blaschke, J., Sebeke, C., Rosenstiel, W., “Using
Genetic Algorithms for Planning of ASIC Chip-Design
Project Flows” (2009), 2009 IEEE Congress On
Evolutionary Computation, VOLS 1-5 Book Series:
IEEE Congress on Evolutionary Computation Pages:
1881-1888, ISBN:978-1-4244-2958-5.

